Management of Severe & Complicated PE in the Real World (Options for Reperfusion, 2022)

Jeffrey A. Kline MD Department of Emergency Medicine Wayne State University

Definition

Reperfusion refers to an ADJUNCT to anticoagulation intended to restore pulmonary vascular patency.

Risk Category	Definition: Acute Pulmonary Embolism and
High risk or massive; mortality 31.8–58.3% (8, 9)	Sustained hypotension, defined as systolic blood pressure < 90 mm Hg, or reduction of 40 mm Hg from baseline, for at least 15 min, or requiring pressors, and not due to any other cause Pulselessness Bradycardia of <40 beats/min with signs of shock
Intermediate risk or submassive, mortality 2.8–8.1% (10, 34)	Does not meet above criteria for high risk Evidence of right ventricle strain by any or all of the following:* Echocardiogram Computed tomographic scan Electrocardiogram Elevated troponins Elevated natriuretic peptides
Low risk, mortality 1.1% (55)	Does not meet above criteria for high risk or intermediate risk

UNIVERSITY

*Definitions of right ventricular strain for each modality vary and are subject to interpretation.

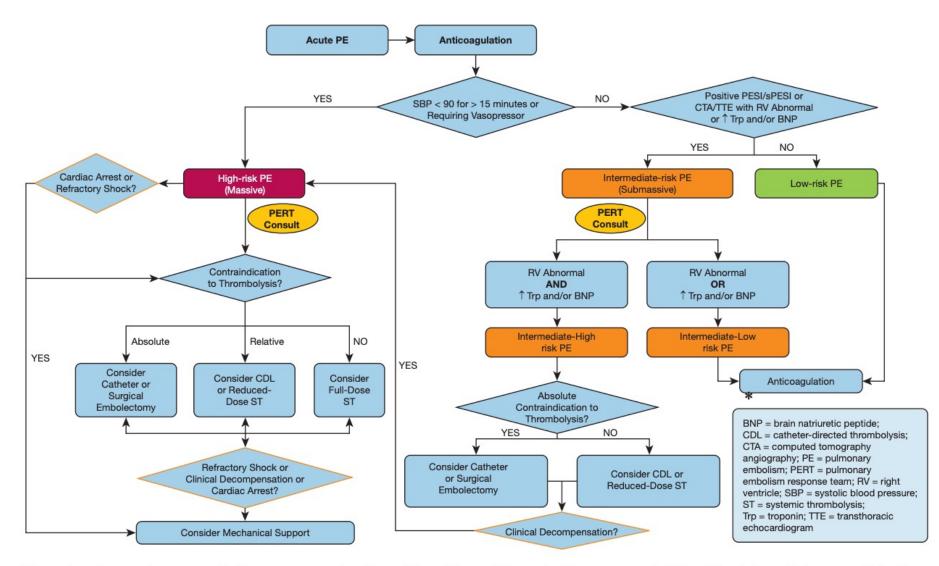
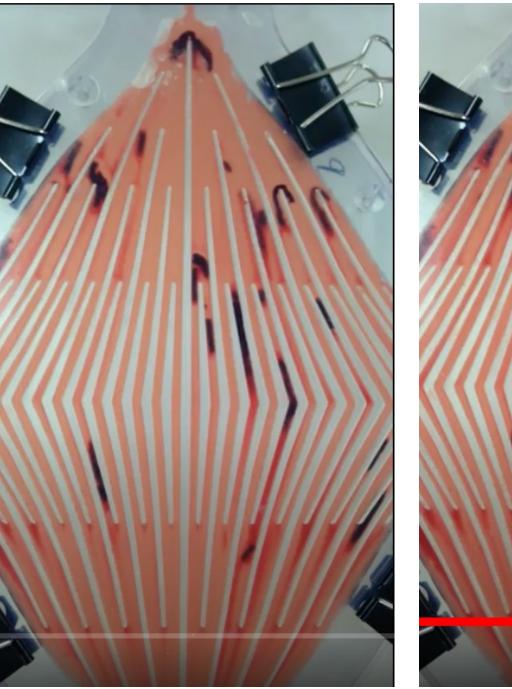


Figure 1 – Acute pulmonary embolism treatment algorithm. Adapted from "Diagnosis, Treatment, and Follow-Up of Acute Pulmonary Embolism: Consensus Practice from the PERT Consortium," by Rivera-Lebron BN. Clin and Appl Thrombosis Hemost. 2019;25:1-16. Copyright 2019 by SAGE. Reprinted with permission.


Options for reperfusion

1. Systemic fibrinolytics

- Alteplase cleared by FDA, 100 mg over two hours
- Tenecteplase by tiered dose
- Other agents include urokinase and streptokinase infused over hours
- 2. Catheter-based methods
 - Catheter directed thrombolysis (CDT)
 - Bland catheters
 - Ultrasonic catheters (Ekos[®])
 - Suction catheters
 - Inari Flowtriever[®], Clotreiver
 - Penumbra Indigo[®]
- 3. Surgical thrombectomy

Does reperfusion work?

Table 1. Sumn	Table 1. Summary of randomized trials comparing catheter-measured pulmonary arterial pressures (PAPs) between patients treated with systemic fibrinolysis+heparin (Lytic) and heparin alone (Placebo)												
Author	Year	Lytic Agent	N Lytic	N Placebo	Timing , , , , , Placebo (mmHg)								
					Mean PAP (Pre) Mean PAP (Post) Mean PAP (Pre)		Mean PAP (Post)		Mean PAP (Post) Mean PAP (Pre)		Mean PAP (Post)		
Tibbut(1)	1974	SK	11	12	72h	30.8	18.5	34.3	29.6				
PIOPED(2)	1990	TPA	9	4	1.5h	28 25		33	33				
Konstantinides(3)	1998	TPA	27	13	12h	34 22		29	27				
NHLBI(4)	1973	UK	82	78	24h	26.2	20	26.1	25				
Dalla-Volta(5)	1992	TPA	20	16	2h	30.2	21.4	22.3	24.8				
				Mean	(mm Hg)	Pre: 29.8	Post: 21.4	Pre: 28.9	Post: 27.9				
					SD	3.0	2.4	4.9	3.5				

WAYNE STATE

Alteplase specifically

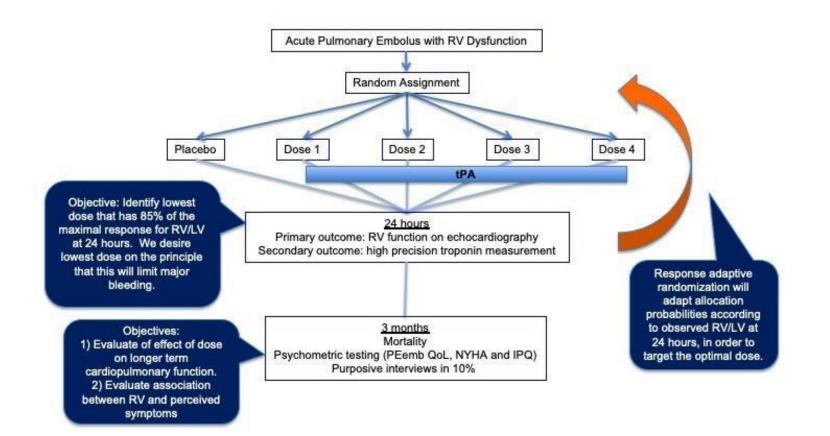
Bleeding rates for full dose alteplase or heparin in placebo-controlled randomized trials											
	Alt	eplase+hep	arin	F	Placebo+heparin						
Reference	Ν	ICH	xPRBC	Ν	N ICH						
(2)	9	0	1	4	0	0					
(5)	20	1	2	16	0	0					
(10)	33	0	3	25	0	3					
(12)	46	0	3	55	1	0					
(13)	118	0	0	138 0		5					
(14)	37	0	2	35	0	1					
Total	263	1	11	273	1	9					
		0.30%	4.0%		0.30%	3.2%					
ICH-intrac	ranial hem	orrhage; xl	PRBC-patie	nts requiri	ng packed re	d blood cell					
						transfusion					

Systemic fibrinolytics--efficacy and harm

1. Fourteen systematic reviews and meta-analyses since PEITHO, all reporting the same data2. Pooling of different types of fibrinolysis

- 3. Dosing and timing of heparin generally poorly described
- 4. Consistent findings(6):

Outcome	N reporting	Findings	N with statistical benefit
All cause mortality	12	All found benefit	3
PE mortality	3	All found benefit	2
Recurrent VTE	10	All found benefit	5
Clinical deterioration	3	All found benefit	3
Major bleeding	11	9 found INCREASE, 2 found DECREASE	5
Intracranial bleeding	3	All found INCREASE	2


Systemic fibrinolytics—"half dose"

- Two systematic reviews have pooled data from "half dose" trials (7,8).
 - Zhang et al found lower rate of major bleeding (odds ratio = 0.33, 95% Cl 0.12-0.91) but Wang et al found no reduction

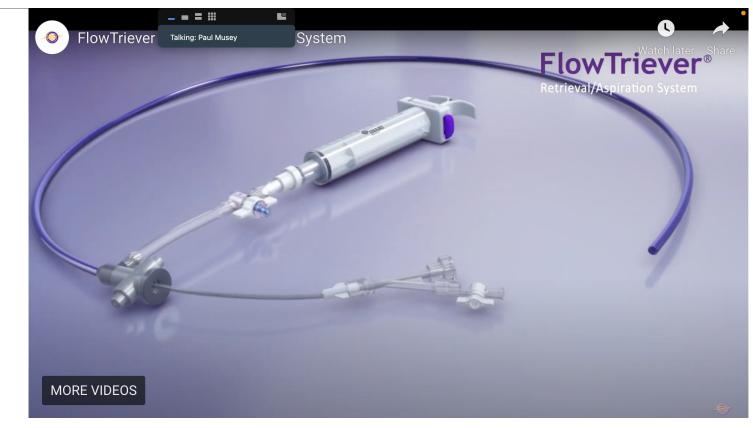
Low dose		Standard dose Odds Ratio					Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	Year	M-H, Fixed, 95% Cl
Goldhaber et al 1994	2	60	2	27	28.8%	0.43 [0.06, 3.23]	1994	
Sors et al 1994	3	36	1	17	13.5%	1.45 [0.14, 15.11]	1994	
Wang et al 2010	2	65	5	53	57.7%	0.30 [0.06, 1.64]	2010	
Total (95% CI)		161		97	100.0%	0.50 [0.17, 1.45]		-
Total events	7		8					
Heterogeneity: Chi ² = 1	.15, df = 2	(P = 0.	56); I ² = 0%					0.01 0.1 1 10 100
Test for overall effect: Z	= 1.28 (P	= 0.20)					Favours low dose Favours standard dose

• Data from a national billing database found half-dose associated with INCREASED rescue treatment and NO decrease in bleeding (9).

Pulmonary Embolism Reperfusion Fibrinolytic Efficacy Clinical Trial (PERFECT) trial*

*Submitted 2/22

Catheter Directed Thrombolysis

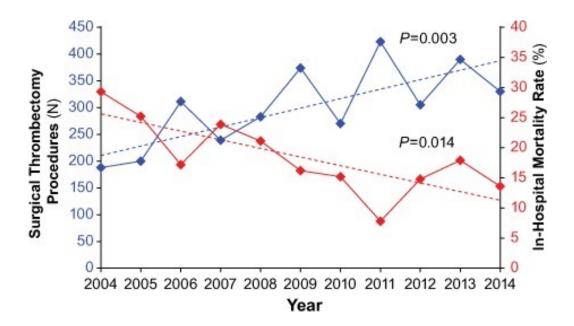

- With exception of one small RCT, all data are before-after(16-18)
- Major Intracranial bleed rate 0.5% (16-18)
- German national study found 1.2% rate ICH(19)
- •Upcoming studies (HI PEITHO and PE-TRACT) will compare CDT with placebo

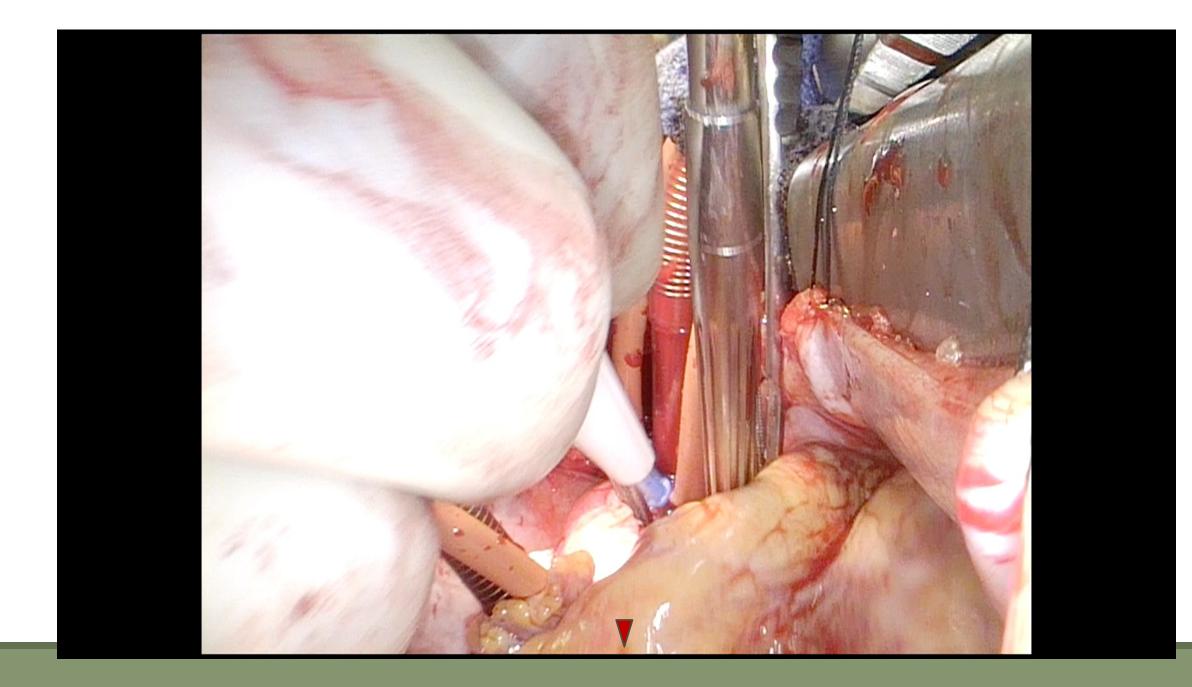
	Pulmo	onary a	rtery s	systolic	pressur	e			
	Baseline	Systolic	stolic PAP Systolic PAP after CDT					Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Bagla et al.	49.8	13.8	45	31.1	9.9	45	10.0%	18.70 [13.74, 23.66]	-
Current Cohort	57.8	15.1	137	38.4	11.8	137	11.2%	19.40 [16.19, 22.61]	-
Dumantepe et al.	67	14	22	34	11	22	8.1%	33.00 [25.56, 40.44]	
Engelberger et al.	62	16	52	40	11	52	9.8%	22.00 [16.72, 27.28]	
Kennedy et al.	47	15	60	38	12	60	10.1%	9.00 [4.14, 13.86]	
Lyang et al.	50.1	16	69	42.6	17.9	69	9.5%	7.50 [1.84, 13.16]	
Mccabe et al.	51.4	15.5	53	40.7	10.8	53	9.9%	10.70 [5.61, 15.79]	
PERFECT	51.2	14.1	100	37.2	15.8	100	10.6%	14.00 [9.85, 18.15]	
SEATTLE	51.4	16	150	36.9	14.9	150	11.1%	14.50 [11.00, 18.00]	-
ULTIMA	52	11.5	30	39.7	10.3	30	9.6%	12.30 [6.78, 17.82]	
Total (95% CI)			718			718	100.0%	15.85 [12.20, 19.51]	•
Heterogeneity: Tau ² =	= 28.29; Chi ^a	= 54.37.	df = 9 (P	< 0.00001); I ² = 83%	5			
Test for overall effect:	•								-50 -25 0 25 50 Favours pre CDT Favours post CDT

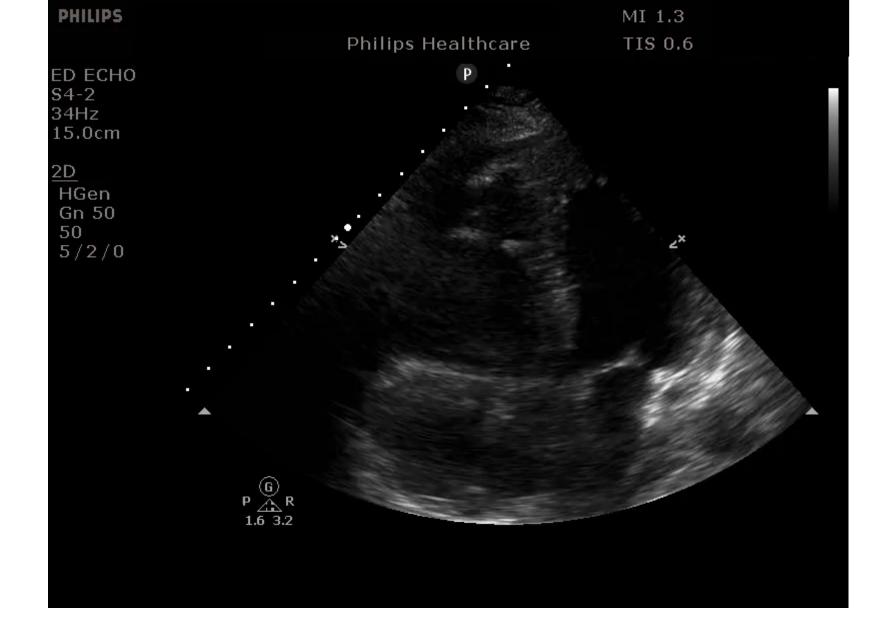
	Righ	t ven	tricula	ar/left	vent	ricula	r ratio		
	Bef	ore CD	DT After CDT					Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Bagla et al.	1.59	0.54	45	0.93	0.17	45	9.7%	0.66 [0.49, 0.83]	
Dumantepe et al.	1.29	0.17	22	0.92	0.11	22	12.9%	0.37 [0.29, 0.45]	-
Engelberger et al.	1.42	0.21	52	1.06	0.23	52	12.9%	0.36 [0.28, 0.44]	
Engelhardt et al.	1.33	0.24	24	1	0.13	24	12.0%	0.33 [0.22, 0.44]	
Lyang et al.	1.1	0.2	69	0.9	0.1	69	14.0%	0.20 [0.15, 0.25]	-
Mccabe et al.	1.12	0.3	53	0.98	0.2	53	12.5%	0.14 [0.04, 0.24]	
SEATTLE	1.55	0.39	150	1.13	0.2	150	13.4%	0.42 [0.35, 0.49]	-
ULTIMA	1.28	0.19	30	0.99	0.17	30	12.7%	0.29 [0.20, 0.38]	
Total (95% CI)			445			445	100.0%	0.34 [0.25, 0.42]	•
Heterogeneity: Tau² =	0.01; C	hi² = 5	8.52, d	f=7 (P ·	< 0.00	001); l²	= 88%		
Test for overall effect:	Z = 7.51	(P < (0.0000	1)					Favours before CDT Favours after CDT

Suction catheters (FlowTriever® and Indigo®)

- 20-24 F hose
- No sheath, no fibrinolytics
- Similar before-after PAPs as with catheter directed thrombolysis (20-22)
- Vascular puncture, ventricular dysrhythmia and major hemorrhage occur in 3-5% (20-22)
- No controlled data showing superiority over anticoagulation alone




	Pros (+) and	d cons (-) of Tenecte	olase versus cathete	r directed therapy	
Method	Effectiveness	Availability	Safety	Patient/provider preference	Adoption/scalability
Catheter directed lysis	 + Registry evidence and one RCT(15) showing PAPs decrease at 24 hours; ability to keep going if 24 hr PAP still high - Low grade evidence of superiority over placebo (only one small RCT); Little effect on distal clots 	+ Current default at many PERT teams - Requires intra- or interfacility transfer to a cath/IR suite. Requires expertise lacking 24/7 at most hospitals	+ Lower total dose lytics - Sheath in place >24 hours, associated bleeding risk; greater fibrinogen depletion; risk of cardiac/PA puncture	+Multidisciplinary care; lower dose lytics; more personalized - Psychological effects of the cath/IR experience	 + Used by PERT teams already at large hospitals - Superiority over placebo supported only by one small RCT; may be supplanted by suction catheters; requirement for specialty care
Bolus dose Tenecteplase	 + Multiple RCTs show superiority over placebo; more complete distal lysis; faster effect than CDT The "zero flow boundary" hypothesis: the enzyme may not reach wedged-in clots 	 + Available at bedside for rapid, bolus infusion; allows simplicity of LMWH -Not all EDs have tenecteplase at present 	 + No indwelling sheath or risk of heart/PA puncture; minimal drop in fibrinogen⁵⁰ - Increased major bleed risk at full dose 	+ Patient perception of less invasive and less intimidating than the CDT experience	 + Likely to become the stocked fibrinolytic of choice in EDs around the US (see 1.4 for rationale) - Increased risk of bleeding


Surgical thrombectomy

- Mechanical solution to a mechanical problem ("Trendelenburg" operation*)
- Generally reserved for proximal clot, hypotension or clot in transit
- Evidence is case series or national databases(23)
- Do not confuse with chronic thromboembolic pulmonary hypertension

*Trendelenburg F. Ueber die operative Behandlung der Embolie der Lungenarterie. Arch Klin Chir 1908;86(3):686–700

Clot in transit: do more than anticoagulate

Heparin alone probably wrong

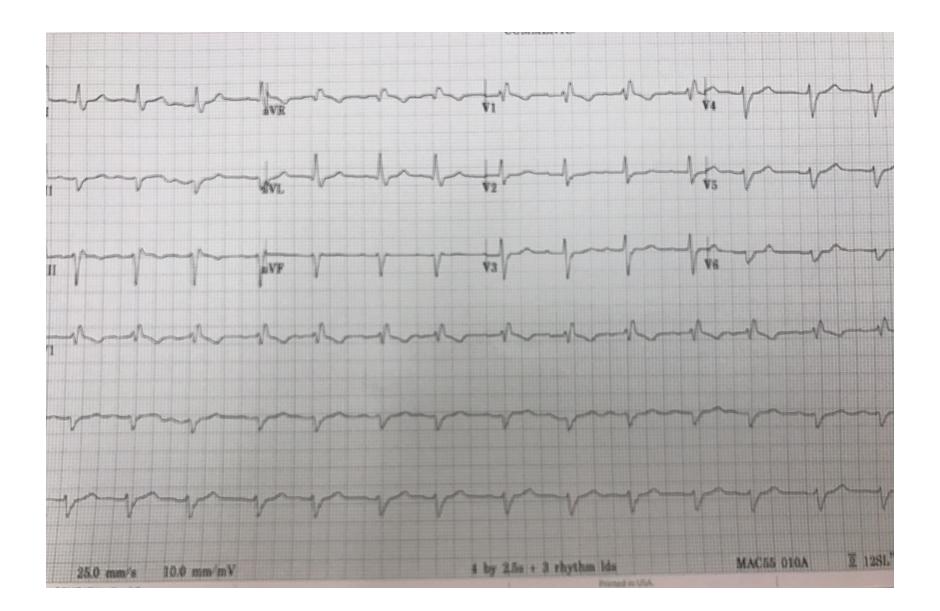
592

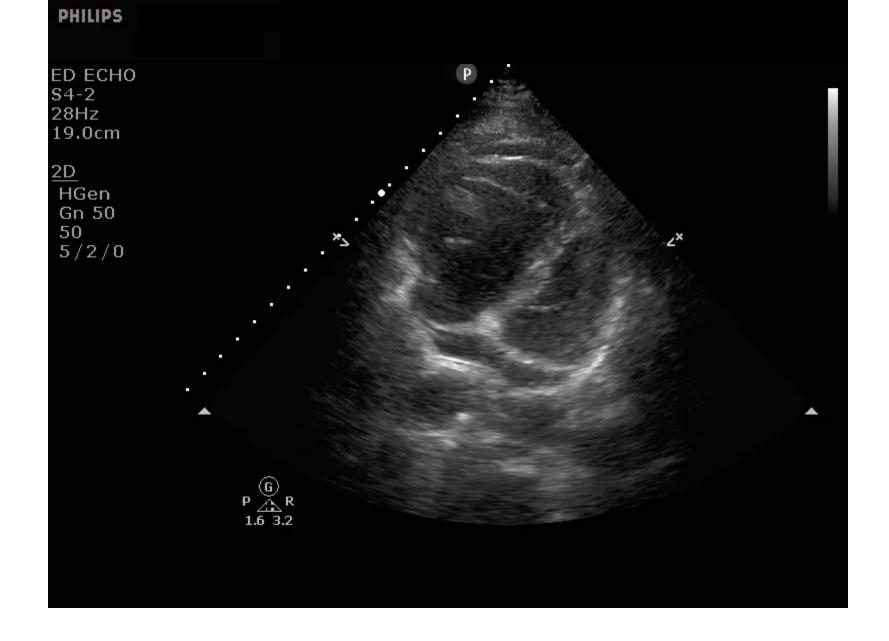
The American Journal of Medicine, Vol 130, No 5, May 2017

 Table 3
 Reperfusion Therapy as Determinant of Outcome in 325 Patients Who Had Acute Symptomatic Pulmonary Embolism and Right Heart Thrombi

Event	Unadjusted OR (95% CI)	P Value	Adjusted OR* (95% CI)	P Value
All-cause mortality	0.58 (0.19-1.74)	.33	0.34 (0.10-1.11)	.08
PE-related mortality	0.77 (0.21-2.76)	.69	0.48 (0.12-1.92)	.30
Recurrent venous thromboembolism	7.67 (1.37-42.77)	.02	8.20 (1.35-49.61)	.02
Major bleeding	0.90 (0.24-3.30)	.88	0.70 (0.17-2.80)	.62

CI = confidence interval; OR = odds ratio; PE = pulmonary embolism.


*Multivariate adjustment for the simplified Pulmonary Embolism Severity Index¹⁸ and recent bleeding.



Empiric treatment

"62 y/o male, became hypotensive and hypoxic after metatarsal surgery when they deflated his pneumatic tourniquet after over three hours ischemic time. I requested that they bolus 70/kg of heparin. Arrived here approximately 8:20 PM. Hypotensive 67/45, intubated. He is paralyzed and unresponsive."

BP 75/57 HR 83, intubated O2Sat 98% FiO2 1.0

Pregnancy with massive PE

29-year-old female presents as medical alert for syncope

911 was called after witnessed syncopal episode by mother and father, on EMS arrival patient was sitting in the bathroom and had another witnessed syncopal episode. Found to be hypoxic and tachycardic, upon awakening was complaining of chest pain and back pain. Patient is approximately 14 weeks pregnant

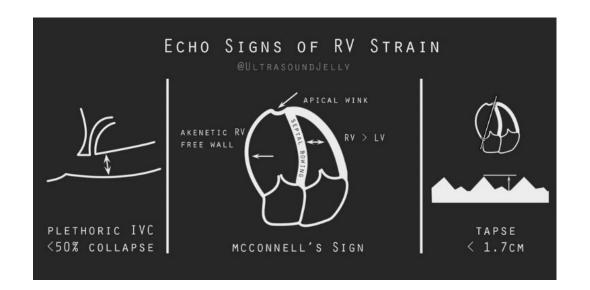
HR 120 bpm, RR 35, BP 143/96

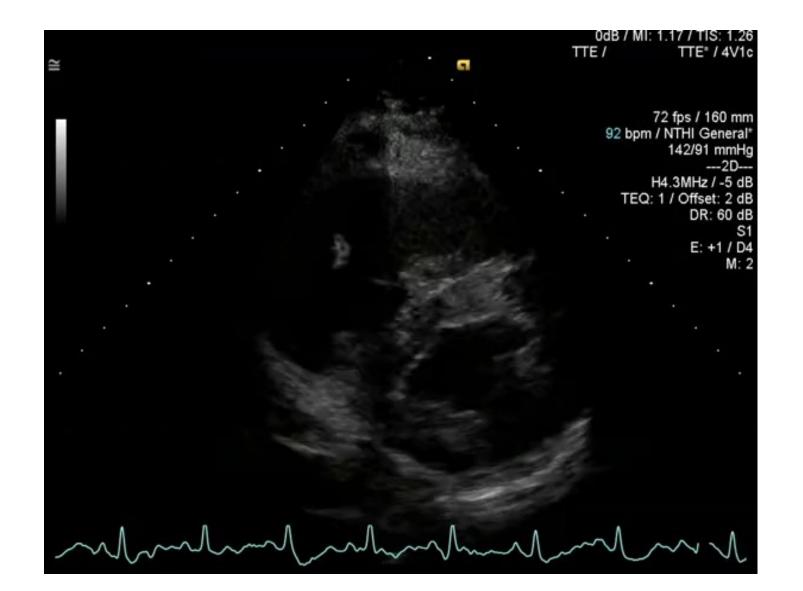
Treating massive PE in pregnancy

Case report level of evidence; one systematic review

Fibrinolysis (n=61 antenatally):

- Maternal Survival 96%; Fetal survival 81.5%
- Maternal bleeding 18%


Surgical thrombectomy (n=21 antenatal)


- Maternal survival 84%; fetal survival 57%
- Maternal bleeding 20%

Martillotti G, et al. J Thromb Haemost. 2017.

Empiric lysis at bedside

- Near arrest situations
- Bedside echo has LR(+) of approximately 3.0 (24,25)

Empiric lysis at bedside

- Near arrest situations
- Bedside echo has LR(+) of approximately 3.0 (24,25)
- Witnessed arrest + age <65 + PEA as first rhythm has predictive value + of 50% for PE (26)
- EKG with acute pulmonary hypertension LR(+) about 3.0 (27)

Pulmonary hypertension on ECG

 Daniel score (Shopp JD, et al. Acad Emerg Med 2015; 22:1127-1137)

d: Unknown	Referred by: KALATHOR	Confirmed by: KENNETH RHINEHART
	July July 1	
afarifaritaritaritaritaritaritaritaritaritarit	ala far far far far far far far far far fa	
~f~~f~~f~~f~~f~~f~~f~~f~~f~~f~~f~~f~~f~	with the second se	Nor V6
-	-huhuhuhuh	uhuhuhuhuhuh
Martin and and and and and and and and and an	af af af af a far	
	Junio	

ACADEMIC EMERGENCY MEDICINE • www.aemj.org

Table 5

ORs for the ECG Components for the Risk of Hemodynamic Collapse or Death

ECG Finding	OR (95% CI)
HR > 100 beats/min S1 Q3 T3 S1Q3T3 RBBB Unspecified Incomplete Complete iT wave V1–V4 V1 V2 V3	$\begin{array}{c} 4.46 \ (1.68-11.84) \\ 1.76 \ (1.09-2.85) \\ 0.98 \ (0.5-1.93) \\ 1.68 \ (0.44-6.52) \\ 2.06 \ (1.23-3.45) \\ \end{array}$ $\begin{array}{c} 1.89 \ (1.27-2.81) \\ 1.05 \ (0.46-2.42) \\ 2.67 \ (1.81-3.95) \\ \end{array}$ $\begin{array}{c} 1.69 \ (0.83-3.43) \\ 2.63 \ (1.47-4.73) \\ 6.94 \ (2.41-19.96) \\ 7.07 \ (1.13-44.22) \end{array}$
STEaVR Atrial fibrillation	5.24 (3.98–6.91) 1.75 (1.15–2.66)
Afib = atrial fibrillation; HR = heart rate; PE = pulmon bundle branch block, STE = ST e	ary embolism; RBBB = right

Empiric lysis at bedside

- Near arrest situations
- Bedside echo has LR(+) of approximately 3.0 (24,25)
- Witnessed arrest + age <65 + PEA as first rhythm has predictive value + of 50% for PE (26)
- EKG with acute pulmonary hypertension LR(+) about 3.0 (27)
- Lower extremity venous ultrasound might confirm a donor site
- Please give heparin!
- Bolus lysis not associated with increased bleed rate

Treating PE with active bleeding

- Suction catheters
- Caval interruption
- Consider inhaled nitric oxide or epoprostenol

Contents lists available at ScienceDirect

Nitric Oxide

journal homepage: www.elsevier.com/locate/yniox

Inhaled nitric oxide to treat intermediate risk pulmonary embolism: A multicenter randomized controlled trial

Jeffrey A. Kline^{a,*}, Michael A. Puskarich^b, Alan E. Jones^c, Ronald A. Mastouri^d, Cassandra L. Hall^a, Anthony Perkins^e, Emily E. Gundert^f, Tim Lahm^g

Measurement	Definitions	NO		Placebo		P value
		n/38*	%	n/38*	%	_
Primary outcome	Normal right ventricular function on echocardiography and normal troponin T**	9	24%	5	13%	0.375
Components of primary outcome	Right ventricular diastolic diameter $< 43 \text{ mm}$	31	82%	27	71%	
	Tricuspid annular plane systolic excursion > 16 mm	29	76%	28	74%	
	Right ventricular index of myocardial performance normal	22	58%	22	58%	
	Right ventricular fractional area of contraction $> 33\%$	23	61%	21	55%	
	Plasma troponin T concentration $< 14 \text{ pg/mL}$	14	37%	11	29%	

Table 2The primary outcome.

Summary

•Multiple options exist for reperfusion after pulmonary embolism. Only full-dose systemic fibrinolysis has been demonstrated superior to placebo in more than one randomized controlled trial.

References

1. Tibbutt DA, Davies JA, Anderson JA, Fletcher EWL, Hamill J, al e. Comparison by controlled clinical trial of streptokinase and heparin in treatment of life-threatening pulmonary embolism. Br Am J. 1974;1(5904):343-7.

2. Investigators P. Tissue plasminogen activator for the treatment of acute pulmonary embolism. Chest. 1990;97(3):528-33.

3. Konstantinides S, Tiede N, Geibel A, Olschewski M, Just H, Kasper W. Comparison of alteplase versus heparin for resolution of major pulmonary emoblism. Amer Jrnl of Cardiology. 1998;82(8):966-70.

- 4. Sasahara AA, Hyers TM, Cole CM. The urokinase pulmonary embolism trial: A national cooperative study. Circulation. 1973;47(Suppl 2):II-66-II-89.
- 5. Dalla-Volta S, Palla A, Santolicandro A, Giuntini C, Pengo V, Visioli O, et al. PAIMS 2: Alteplase combined with heparin versus heparin in the treatment of acute pulmonary embolism. Plasminogen activator Italian multicenter study 2. Journal of the American College of Cardiology. 1992;20(3):520-
- 6. Riva N, Puljak L, Moja L, Ageno W, Schunemann H, Magrini N, et al. Multiple overlapping systematic reviews facilitate the origin of disputes: the case of thrombolytic therapy for pulmonary embolism. J Clin Epidemiol. 2017.
- 7. Zhang Z, Zhai ZG, Liang LR, Liu FF, Yang YH, Wang C. Lower dosage of recombinant tissue-type plasminogen activator (rt-PA) in the treatment of acute pulmonary embolism: a systematic review and meta-analysis. ThrombRes. 2014;133(3):357-63.
- 8. Wang TF, Squizzato A, Dentali F, Ageno W. The role of thrombolytic therapy in pulmonary embolism. *Blood*. Apr 2 2015;125(14):2191-9. doi:10.1182/blood-2014-08-559278
- 9. Kiser TH, Burnham EL, Clark B, et al. Half-Dose Versus Full-Dose Alteplase for Treatment of Pulmonary Embolism. *Crit Care Med*. Oct 2018;46(10):1617-1625. doi:10.1097/ccm.00000000003288
- 10. Levine M, Hirsh J, Weitz J, Cruickshank M, Neemah J, Turple A, et al. A randomized trial of a single bolus dosage regimen of recombinant tissue plasminogen activator in patients with acute pulmonary embolism. Chest. 1990;98(6):1473-9.
- 11. Investigators P. Tissue plasminogen activator for the treatment of acute pulmonary embolism. Chest. 1990;97(3):528-33.
- 12. Goldhaber SZ, Agnelli G, Levine MN. Reduced dose bolus alteplase vs conventional alteplase infusion for pulmonary embolism thrombolysis: An international multicenter randomized trial. Chest. 1994;106(3):718-24.
- 13. Konstantinides S, Geibel A, Heusel G, Heinrich F, Kasper W. Heparin plus alteplase compared with heparin alone in patients with submassive pulmonary embolism. The New England Journal of Medicine. 2002;347(15):1143-50.
- 14. Fasullo S, Scalzo S, Maringhini G, Ganci F, Cannizzaro S, Basile I, et al. Six-Month Echocardiographic Study in Patients With Submassive Pulmonary Embolism and Right Ventricle Dysfunction: Comparison of Thrombolysis With Heparin. Am J MedSci. 2011;341(1):33-9.
- 15. Kucher N, Boekstegers P, Muller OJ, et al. Randomized, controlled trial of ultrasound-assisted catheter-directed thrombolysis for acute intermediate-risk pulmonary embolism. *Circulation*. 2014;129(4):479-486.

References

16. Bloomer TL, El-Hayek GE, McDaniel MC, et al. Safety of catheter-directed thrombolysis for massive and submassive pulmonary embolism: Results of a multicenter registry and meta-analysis. *Catheter Cardiovasc Interv*. Mar 01 2017;89(4):754-760. doi:10.1002/ccd.26900

17. Kaymaz C, Akbal OY, Tanboga IH, et al. Ultrasound-Assisted Catheter-Directed Thrombolysis in High-Risk and Intermediate-High-Risk Pulmonary Embolism: A Metaanalysis. Curr Vasc Pharmacol. Apr 04 2017;doi:10.2174/1570161115666170404122535

18. Furfaro D, Stephens RS, Streiff MB, Brower R. Catheter-directed Thrombolysis for Intermediate-Risk Pulmonary Embolism. *Annals of the American Thoracic Society*. 2018;15(2):134-144. doi:10.1513/AnnalsATS.201706-467FR

19. Hobohm L, Schmidt FP, Gori T, et al. In-hospital outcomes of catheter-directed thrombolysis in patients with pulmonary embolism. *European Heart Journal Acute Cardiovascular Care*. 2020;10(3):258-264. doi:10.1093/ehjacc/zuaa026

20. Tu T, Toma C, Tapson VF, et al. A Prospective, Single-Arm, Multicenter Trial of Catheter-Directed Mechanical Thrombectomy for Intermediate-Risk Acute Pulmonary Embolism: The FLARE Study. *JACC Cardiovasc Interv*. May 13 2019;12(9):859-869. doi:10.1016/j.jcin.2018.12.022

21. Zuin M, Rigatelli G, Zuliani G, Roncon L. Aspiration Thrombectomy in Intermediate-High Risk Pulmonary Embolism Patients: More Work Ahead. *JACC Cardiovasc Interv*. Jun 28 2021;14(12):1384-1385. doi:10.1016/j.jcin.2021.04.039

22. Sista AK, Horowitz JM, Tapson VF, et al. Indigo Aspiration System for Treatment of Pulmonary Embolism: Results of the EXTRACT-PE Trial. *JACC Cardiovasc Interv*. Feb 8 2021;14(3):319-329. doi:10.1016/j.jcin.2020.09.053

23. Alqahtani F, Munir MB, Aljohani S, Tarabishy A, Almustafa A, Alkhouli M. Surgical Thrombectomy for Pulmonary Embolism: Updated Performance Rates and Outcomes. Tex Heart Inst J. 2019 Jun 1;46(3):172-174. doi: 10.14503/THIJ-18-6751. PMID: 31708697; PMCID: PMC6827469.

24. Qaseem A, Etxeandia-Ikobaltzeta I, Mustafa RA, Kansagara D, Fitterman N, Wilt TJ; Clinical Guidelines Committee of the American College of Physicians, Batur P, Cooney TG, Crandall CJ, Hicks LA, Lin JS, Maroto M, Tice J, Tufte JE, Vijan S, Williams JW Jr. Appropriate Use of Point-of-Care Ultrasonography in Patients With Acute Dyspnea in Emergency Department or Inpatient Settings: A Clinical Guideline From the American College of Physicians. Ann Intern Med. 2021 Jul;174(7):985-993. doi: 10.7326/M20-7844. Epub 2021 Apr 27. Erratum in: Ann Intern Med. 2022 Mar;175(3):458-459. PMID: 33900792.

25. Daley JI, Dwyer KH, Grunwald Z, Shaw DL, Stone MB, Schick A, Vrablik M, Kennedy Hall M, Hall J, Liteplo AS, Haney RM, Hun N, Liu R, Moore CL. Increased Sensitivity of Focused Cardiac Ultrasound for Pulmonary Embolism in Emergency Department Patients With Abnormal Vital Signs. Acad Emerg Med. 2019 Nov;26(11):1211-1220. doi: 10.1111/acem.13774. Epub 2019 Sep 27. PMID: 31562679.

26. Courtney DM, Sasser HC, Pincus CL, Kline JA. Pulseless electrical activity with witnessed arrest as a predictor of sudden death from massive pulmonary embolism in outpatients. Resuscitation. 2001 Jun;49(3):265-72. doi: 10.1016/s0300-9572(00)00374-9. PMID: 11719120.

27. Marchick MR, Courtney DM, Kabrhel C, Nordenholz KE, Plewa MC, Richman PB, Smithline HA, Kline JA. 12-lead ECG findings of pulmonary hypertension occur more frequently in emergency department patients with pulmonary embolism than in patients without pulmonary embolism. Ann Emerg Med. 2010 Apr;55(4):331-5. doi: 10.1016/j.annemergmed.2009.07.025. Epub 2009 Sep 19. PMID: 19766353.