

Asthma: When Albuterol Fails

Dr. Tim Visclosky, MD Special Thanks to Dr. Elaine Pomeranz, MD

A Please consider the environment before printing this PowerPoint

1

DISCLOSURES

· There are no conflicts of interest to disclose

OBJECTIVES

- · Discuss potential reasons albuterol may fail
- Review appropriate adjunctive therapies
- Outline step-wise escalation of asthma management
- Review evidence for various forms of respiratory support

DIVISION OF PEDIATRIC EMERGENCY MEDICINE

3

STEP 1 - IDENTIFY WHAT YOU'RE TREATING

Asthma	Bronchiolitis
>2 years of age	<2 years of age
+ Family History	+ Fever
+ Personal history of atopy	Preceded by URI sxs
+ Wheezing, prolonged expiratory, poor aeration	+ Tachypnea, rales, wheezing, work of breathing

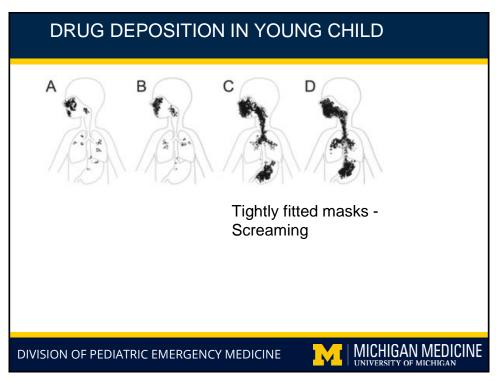
DIVISION OF PEDIATRIC EMERGENCY MEDICINE

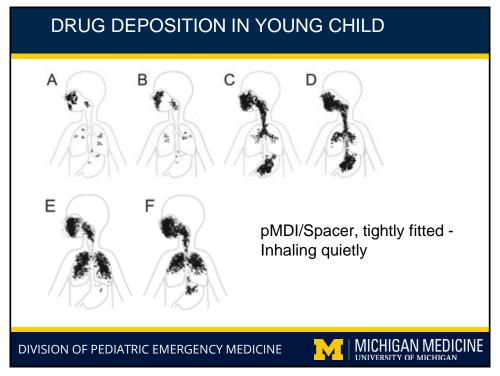
DIFFICULTIES WITH PEDIATRIC ALBUTEROL

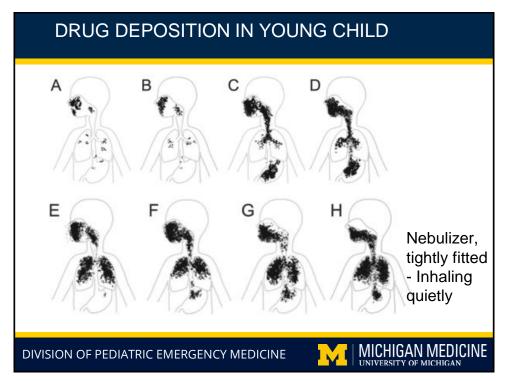
- Low tidal volumes
- Smaller airways result in higher resistance
- Shorter I:E ratio increases drug loss with exhalation
- Behavioral

DIVISION OF PEDIATRIC EMERGENCY MEDICINE

5


DRUG DEPOSITION IN YOUNG CHILD




pMDI/Spacer and Nebulizer with loose fitting face mask

DIVISION OF PEDIATRIC EMERGENCY MEDICINE

9

STEP 2 - TROUBLESHOOTING ALBUTEROL

- Be flexible
- Enlist the family
- pMDI/spacer vs nebulizer decreases stay in ED
- Blow-by is negligible not recommended

DIVISION OF PEDIATRIC EMERGENCY MEDICINE

STEP 2 - TROUBLESHOOTING ALBUTEROL

*Recommended starting doses, may choose Medication Dosing different dosing based on clinical judgement

Albuterol Weight based starting dosing	Nebulizer	MDI	Continuous (*titrate to effect)
5-10 kg	2.5 mg (0.5 mL)	2-4 puffs	7.5 mg/hr
10-20 kg	2.5 mg (0.5 mL)	4 puffs	10 mg/hr
>20 kg	5 mg (1 mL)	8 puffs	15 mg/hr

DIVISION OF PEDIATRIC EMERGENCY MEDICINE

11

STEP 3 - MAXIMIZE ADJUNCTIVES

- Systemic Corticosteroids
 - Prednisone based regimens PO for mild/moderate, IV for severe
 - Dexamethasone based regimens IV, IM, or PO
- Anticholinergics (e.g. ipratropium)
 - o Parasympathetic blockage, increase beta-agonist
 - o For moderate-severe exacerbations, or poor response to short-acting beta agonists (SABAs)

DIVISION OF PEDIATRIC EMERGENCY MEDICINE

STEROIDS: DEX Vs. PRED

- Dexamethasone associated with:
 - Shorter length of stay
 - Lower hospital costs
 - o Improved compliance
 - o Improved tolerance
- · Similar rates of symptom relapse, readmission
- No difference in ICU transfer rates

DIVISION OF PEDIATRIC EMERGENCY MEDICINE

13

STEROIDS: DEX Vs. PRED

Dosing For Asthma Medications	
Methylprednisolone	
0-60 kg	1 mg/kg Q6H
>60 kg	60 mg Q6H
Prednisone/Prednisolone/	
0-30 kg	2 mg/kg/day
>30 kg	60 mg/day
Dexamethasone	0.6 mg/kg (max 16 mg) once daily, 1-2 days total

STEP 4 - IV MAGNESIUM

- Blocks calcium → smooth muscle relaxant
- May result in hypotension
- For severe exacerbations failing initial therapies
- Given as bolus
 - Currently investigating infusion vs inhaled

Dosing For Asthma Medications	
Magnesium Sulfate	
0-40 kg	50 mg/kg (with 20 mL/kg NS bolus)
40-50 kg	2 g (with 20 mL/kg NS bolus)
>50 kg	2 g (with 1L NS bolus)

DIVISION OF PEDIATRIC EMERGENCY MEDICINE

15

STEP 5 - SYSTEMIC BETA AGONIST

- Epinephrine vs Terbutaline
- Effective even with poor ventilation
- Prefer the more readily available option (often epi)
- Terbutaline more common in ICU

Systemic (injected)
beta₂-agonists
Epinephrine 1:1,000
(1 mg/ml)
Terbutaline (1 mg/ml)

0.01 mg/kg up to 0.3–0.5 mg every 20 min for 3 doses sq.

0.01 mg/kg every 20 min for 3 doses then every 2–6 h as needed sq.

STEP 6 - HELIOX

- Converts turbulent to laminar flow
- Improves delivery of SABAs to distal airways
- Limits FiO2
- Recent studies suggest no improvement in clinical

outcomes

8

DIVISION OF PEDIATRIC EMERGENCY MEDICINE

17

STEP 7 - KETAMINE

- Bronchodilatory and sedative effects
- Can avoid intubation vs use as RSI med
- Similar efficacy to theophylline with improved safety
- Can aggravate bronchorrhea
- Initial bolus of 0.5-1 mg/kg over 2-4 minutes, followed by infusion of 0.5-2 mg/kg/hr

HIGH FLOW NASAL CANNULA

- Limited evidence
- Often better tolerated than CPAP/BIPAP
- Potentially delays non-invasive ventilation
- Does not appear to decrease intubations

DIVISION OF PEDIATRIC EMERGENCY MEDICINE

19

NON-INVASIVE VENTILATION

- Limited evidence
- Increasingly being used to avoid intubation
- Reasonable to use in short trials

DIVISION OF PEDIATRIC EMERGENCY MEDICINE

MECHANICAL VENTILATION

- Do not delay once deemed necessary
 - Apnea or Coma
 - o PCO2 ≥42 mmHg
 - Inability to speak or AMS
 - Worsening fatigue/intercostal retractions
- Anticipate rapid desaturation and laryngospasm with RSI
- Increased risk for cardiovascular collapse and barotrauma

DIVISION OF PEDIATRIC EMERGENCY MEDICINE

21

FINAL STEP - EDUCATION

- Review the Discharge Plan
- Review triggers and Asthma
 Action Plan
- Discuss signs, symptoms, home management
- Encourage appropriate follow-up
- Consider referrals and home peak flow meters

DIVISION OF PEDIATRIC EMERGENCY MEDICINE

NOT RECOMMENDED

- Methylxanthines
- Antibiotics except as needed for comorbid conditions
- Aggressive hydration
- Chest PT
- Mucolytics
- Sedation (except as part of RSI)

DIVISION OF PEDIATRIC EMERGENCY MEDICINE

23

KEY POINTS

- Know what you're treating
- Be flexible and work with families
- · Consider reasons albuterol may fail
- Reasonable to attempt alternatives to intubation, but only for short trial

REFERENCES

- Baudin F. Vuisson A, Vanel B. Nasal high flow in managemet of children with status asthmaticus: a retrospective observational study. *Annals of Intensive Care*. 2017; 7(1): 55.
- DiBlasi R. Clinical controversies in aerosol therapy for infants and children. Respiratory Care. 2015; 60(6): 894-916.
- Hendaus MA, Jomha FA, Alhammadi AH. Is ketamine a lifesaving agent in childhood acute severe asthma?
 Therapeutics and Clinical Risk Management. 2016; 12: 273-9.
- Kang CM, Wu ET, Wang CC, et. al. Bilevel poaitie airway pressure ventilation efficiently improves respiratory distress in initial hours treating children with severe asthma exacerbation. *Journal of the Formosan Medical* Association. 2019. doi: 10.1016/j.ilma.
- Kirkland SW, Cross E, Campbell S, et. al. Intramuscular versus oral corticosteroids to reduce relapses following discharge from the emergency department for acute asthma. *Cochrane Database Systematic Review.* 2018; 6.
- Korang SK, Feinberg J, Wetterslev J, Jakobsen JC. Non-invasive positive pressure ventilation for acute asthma in children (review). *Cochrane Database Systematic Review*.2016; 9.
- Kostakou E, Kaniaris E, Filiou E, et. al. Acute severe asthma in adolescent and adult patients: Current perspectives on assessment and management. *Journal of Clinical Medicine*. 2019; 8(9): doi: 10.3390/jcm8091283.

DIVISION OF PEDIATRIC EMERGENCY MEDICINE

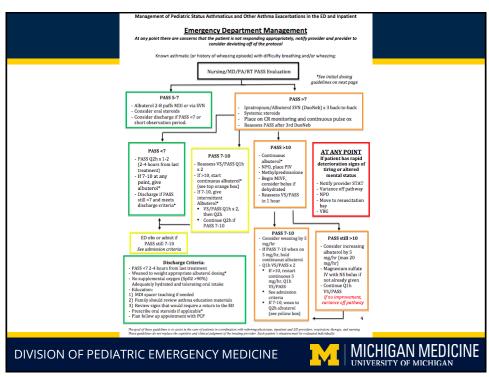
25

REFERENCES

- Mayfield S, Jauncey-Cooke J, Hough JL, et. al. High-flow nasal cannula therapy for respiratory support in children (review). Cochrane Database Systematic Review. 2014; 3.
- National Asthma Education and Prevention Program. Expert panel report 3: Guidelines for the diagnosis and management of asthma. U.S. Department of Health and Human Services. 2007.
- Pardue JB, Fleming GM, Otillio JK, et. al. Pediatric acute asthma exacerbations: Evaluation and management from emergency department to intensive care unit. The Journal of Asthma. 2016; 53(6): 607-617.
- Pilar J. Modesto IA, Lopez-Fernandez YM. High-flow nasal cannula therapy versus non-invasive ventilation in children with severe acute asthma exacerbation: An observational cohort study. *Medicina Intensiva*. 2017; 41(7): 41
- Ralston SL, Lieberthal AS, Meissner HC, et al. Clinical practice guideline: The diagnosis, management, and prevention of bronchiolitis. *Pediatrics*. 2014;134(5):e1474—e1502
- Rehder KJ. Adjunct therapies for refractory status asthmaticus in children. Respiratory Care. 2017; 62(6): 849-65.
- Stenson EK, Tchou MJ, Wheeler DS. Management of acute asthma exacerbations. Current Opinion in Pediatrics. 2017; 29(3): 305-310.

DIVISION OF PEDIATRIC EMERGENCY MEDICINE

METHYLXANTHINES (E.G. THEOPHYLLINE)


- Phosphodiesterase inhibitor resulting in bronchodilation
- Narrow therapeutic window and numerous drug interactions
- Not recommended by National Asthma Education and Prevention Program
- Recent evidence shows similar clinical improvement at subtherapeutic levels

DIVISION OF PEDIATRIC EMERGENCY MEDICINE

27

Aerosol Device and Interface Age Small-volume nebulizer with mask or hood Infant Small-volume nebulizer with mask $\leq 3 \text{ y}$ Small-volume nebulizer with mouthpiece $\geq 3 \text{ y}$ pMDI with valved holding chamber/spacer and mask < 4 ypMDI with valved holding chamber/spacer $\geq 4 \text{ y}$ DPI ≥ 4 y MDI ≥ 5 y Breath-actuated MDI (eg, Autohaler) $\geq 5 \text{ y}$ Breath-actuated nebulizer ≥ 5 y From Reference 17. pMDI = pressurized metered-dose inhaler DPI = dry powder inhaler MICHIGAN MEDICINE **DIVISION OF PEDIATRIC EMERGENCY MEDICINE**

Assessment Category	1 point	2 points	3 points
Age Specific	Spontaneous without	Spontaneous without	Spontaneous without
Respiratory Rate	vent support	vent support	vent support
2-3 years	≤ 34	35-39	>40
4 to 5 years	≤ 30	31-35	>36
6 to 12 years	≤ 26	27-30	>31
> 12 years	≤ 23	24-27	>28
			Or Vent support
			required
Oxygenation (SpO2	> 95% on room air	92%-95% on room air	<92% on room air
or SO2)		Or	Or
		FiO2 <= 40% (nasal	FiO2 >40% (simple
		cannula)	facemask, non-
			rebreather, NIPPV or
			PPV)
Auscultation	Normal breath sounds	Expiratory wheezing	Inspiratory and
	to end-expiratory	throughout expiratory	expiratory wheezing
	wheeze only	phase in one or more	to diminished breath
		areas	sounds or silent
			breath sounds or
			poor aeration
Retractions	Zero to one site	Observable in two	Observable in 3 or
		sites	more sites
Dyspnea / Work of	Speaks in sentences	Speaks in partial	Speaks in single
breathing	Or	sentences, short cry	words / short phrases
	Unlabored and at rest		/ grunting
			Or
			Requires intubation